Quantification of structural changes of UHMWPE components in total joint replacements
نویسندگان
چکیده
BACKGROUND At present time the number of implantations of joint replacements as well as their revisions increases. Higher demands are required on the quality and longevity of implants. The aim of this work was to determine the degree of oxidative degradation and the amount of free/residual radicals in selected ultra-high molecular weight polyethylene (UHMWPE) components of the joint replacements and demonstrate that the measured values are closely connected with quality and lifetime of the polymer components. METHODS We tested both new (4 samples) and explanted (4 samples) UHMWPE polymers for total joint replacements. The samples were characterized by infrared spectroscopy (IR), electron spin resonance (ESR) and microhardness (MH) test. The IR measurements yielded the values of oxidation index and trans-vinylene index. The ESR measurements gave the free radicals concentration. RESULTS In the group of new polyethylene components, we found oxidation index values ranging from 0.00-0.03 to 0.24. The trans-vinylene index values ranged from 0.044 to 0.080. The value of free radical concentration was zero in virgin and also in sample of Beznoska Company and non-zero in the other samples. In the group of explanted components, the measured values were associated with their history, micromechanical properties and performance in vivo. CONCLUSIONS We demonstrated that measuring of oxidative damage may help the orthopaedic surgeon in estimating the quality of UHMWPE replacement component and thus radically to avoid early joint replacement failure due to worse polyethylene quality.
منابع مشابه
An augmented hybrid constitutive model for simulation of unloading and cyclic loading behavior of conventional and highly crosslinked UHMWPE.
Ultra-high molecular weight polyethylene (UHMWPE) is extensively used in total joint replacements. Wear, fatigue, and fracture have limited the longevity of UHMWPE components. For this reason, significant effort has been directed towards understanding the failure and wear mechanisms of UHMWPE, both at a micro-scale and a macro-scale, within the context of joint replacements. We have previously ...
متن کاملNotch Effects Under Physiologically-Relevant Conditions of Conventional and Highly Crosslinked UHMWPEs
Introduction: Ultra high molecular weight polyethylene (UHMWPE) components used in total joint replacements have rims and fillets that act as design stress risers; thus, it is of interest to determine the behavior UHMWPE under multiaxial loading conditions. Currently, there are a number of conventional and crosslinked UHMWPE formulations in clinical use in total hip and total knee replacement c...
متن کاملInvestigation of Wear Behavior of Biopolymers for Total Knee Replacements Through Invitro Experimentation
The average life span of knee prosthesis used in Total Knee Replacement (TKR) is approximately 10 to 15 years. Literature indicates that the reasons for implant failures include wear, infection, instability, and stiffness. However, the majority of failures are due to wear and tear of the prosthesis. The most common biopolymer used in TKR is Ultra High Molecular Weight Polyethylene (UHMWPE). Pr...
متن کاملThe Bearing Surfaces in Total Hip Arthroplasty – Options, Material Characteristics and Selection
During total hip arthroplasty, both the femoral and acetabular bearing surfaces are surgically replaced with metallic, polymeric, and/or ceramic components. Throughout the twentieth century, many different combinations of these materials have been proposed and examined as bearing surfaces for total hip arthroplasty. Metal-on-metal total hip replacements were first implanted by Wiles in the 1930...
متن کاملThe Biomechanical Effect of Loading Speed on Metal-on-UHMWPE Contact Mechanics
Ultra high molecular weight polyethylene (UHMWPE) is a material commonly used in total hip and knee joint replacements. Numerous studies have assessed the effect of its viscoelastic properties on phenomena such as creep, stress relaxation, and tensile stress. However, these investigations either use the complex 3D geometries of total hip and knee replacements or UHMWPE test objects on their own...
متن کامل